MINISTERSTVO ŽIVOTNÉHO PROSTREDIA SLOVENSKEJ REPUBLIKY Sekcia geológie a prírodných zdrojov

ŠTÁTNY GEOLOGICKÝ ÚSTAV DIONÝZA ŠTÚRA Regionálne centrum Košice

Tektonická a seizmická aktivita územia

Názov geologickej	úlohy:	ČMS Geologické faktory Podsystém 02: Tektonická a seizmická aktivita územia			
Číslo geologickej ú	lohy:	207			
		Správa za obdobie: rok 2015			
Zodpovedný riešiteľ:	RNDr.	Pavel Liščák, CSc.			
Správu vypracoval:	Ing. Ľu	bomír Petro, CSc.			
Spolupracovali: Ing. Dušan Ferianc EUR ING, Zväz SVTS Bratislava RNDr. Andrej Cipciar, Geofyzikálny odbor, ÚVZ SAV Bratislava Ing. Martin Bednárik, PhD., Geofyzikálny odbor, ÚVZ SAV Bratislava Mgr. Miriam Kristeková, PhD., Geofyzikálny odbor, ÚVZ SAV Bratislava					

Ing. Martin Kováčik, ŠGÚDŠ RC Košice Mgr. Miloš Briestenský, PhD., ÚSMH AV ČR, v. v .i. Praha Doc. RNDr. Pavel Bella, PhD., Katedra geografie, PF KU Ružomberok Správa slovenských jaskýň, ŠOP, L. Mikuláš

Október 2016

OBSAH

1. Úvod	2
2. Pohyby povrchu územia (D. Ferianc)	2
2.1 Permanentný monitoring zmien na geodetických bodoch technológiou GNSS v EPN	5
3. Pohyby pozdĺž zlomov (Ľ. Petro, M. Briestenský) 1	3
3.1 Základná charakteristika monitorovacej siete1	3
3.2 Pozorované ukazovatele a metódy ich hodnotenia1	8
3.3 Výsledky monitorovania1	8
3.4 Diskusia	б
4. Monitorovanie seizmických javov (A. Cipciar, M. Kristeková)	7
4.1 Dátové a spracovateľské centrum2	8
4.2 Seizmometricky lokalizované zemetrasenia s epicentrom na území Slovenskej	
republiky2	9
4.3 Makroseizmicky pozorované zemetrasenia na území Slovenskej republiky	1
5. Literatúra	1

1. Úvod

V rámci sledovania tektonickej a seizmickej aktivity územia Slovenska (obr. 1) boli v roku 2015 monitorované pohyby povrchu aj s využitím systémov globálneho určenia priestorovej polohy (*GNSS*) Zeme na vybraných hĺbkovo stabilizovaných geodetických bodoch (Geodetický a kartografický ústav Bratislava - GKÚ). Pohyby pozdĺž zlomov boli monitorované na vybratých lokalitách pomocou dilatometrov typu *TM-71* (Štátny geologický ústav Dionýza Štúra, regionálne centrum Košice). Seizmická aktivita územia Slovenska bola zhodnotená Geofyzikálnym odborom Ústavu vied o Zemi Slovenskej akadémie vied (ÚVZ SAV) na základe meraní za rok 2015.

Obr. 1 Schéma rozmiestnenia lokalít monitorovaných na Slovensku v rámci geologickej úlohy Čiastkový monitorovací systém geologických faktorov životného prostredia SR, subsystém 02 Tektonická a seizmická aktivita územia

2. Pohyby povrchu územia

Monitorovanie geodynamických prejavov vrchnej vrstvy zemskej kôry geodetickými metódami umožnili vysoko presné geodetické prístroje vybavené kvalitnou elektronikou, zvyčajne plne automatizované s objektívnym záznamom údajov vylučujúcim z procesu merania merača s jeho osobnou chybou. Na presné určenie lokalizačných parametrov (súradníc) bodov v referenčných súradnicových systémoch sa využívajú geodetické merania, a to najmä technológia na určovanie priestorovej polohy bodom pomocou globálnych navigačných družicových systémov (*GNSS*), geometrická nivelácia a relatívne i absolútne určenie tiažového zrýchlenia. Technológia GNSS je efektívna metóda na relatívne určovanie polohy bodov s uvádzanou horizontálnou neistotou (x, y) 2 – 3 mm a s neistotou vo výške (z) asi 4 – 9 mm pri dodatočnom spracovaní.

Geodetický a kartografický ústav Bratislava (GKU) je prevádzkovateľom a správcom slovenskej observačnej služby *GNSS* označenej menom SKPOS, ktorá zabezpečuje od jesene 2006 permanentné meranie *GNSS* s príjmom signálov z družíc amerického systému *NAVSTAR GPS*, ruský *GLONASS*, ale už aj európsky systém *GALILEO* i čínsky *BeiDou*. Na presnú lokalizáciu, výpočet súradníc sa zatiaľ dajú využiť iba údaje z systémov NAVSTAR GPS a GLONASS. SKPOS v súčasnosti tvorí sieť 34 geodetických bodov, referenčných staníc *GNSS*, realizujúcich geodetický referenčný systém *ETRS89* na Slovensku. *ETRS89* – Európsky terestrický referenčný systém – je systém priestorových súradníc označovaný parametrami B, L, h, alebo karteziánskymi súradnicami *x*, *y*, *z*, zavedený na návrh Európskej subkomisie pre referenčné rámce (*EUREF*) pri Medzinárodnej federácii geodetov (*FIG*) Európskou úniou a direktívach *INSPIRE*. SKPOS poskytuje v reálnom čase údaje zo 4 bodov

Obr. 2 Rozmiestnenie bodov SKPOS – (EPN) na území Slovenska

do spracovania v EPN (obr. 2) a z ďalších bodov aj do projektu zoskupenia *EUPOS*, potom i na Katedru geodetických základov Stavebnej fakulty STU v Bratislave, kde je realizovaný projekt Národné centrum diagnostikovania deformácií zemského povrchu na území Slovenska (Mojžeš et al., 2015). Z týchto projektov zatiaľ neboli publikované výsledky za rok 2015.

Prvoradou úlohou SK*POS* je zabezpečiť realizáciu súradnicového systému *ETRS89* pre subjekty využívajúce technológiu *GNSS*. Merané údaje *GNSS* z bodov špeciálne stabilizovaných je možné využiť aj na geodynamický monitoring.

Rozmiestnenie a vybudovanie bodov bolo realizované najmä na dosiahnutie požadovanej presnosti pri geodetických meraniach na mapovacie a katastrálne geodetické činnosti. Výsledky z dlhodobých meraní, ktoré sú prezentované v nasledujúcich grafoch a tabuľkách nám potvrdzujú, že vybrané lokality na stabilizáciu bodov preukazujú vysokú stabilitu a zmeny majú zvyčajne sezónny charakter.

Z 34 geodetických bodov zaradených do SK*POS* bolo v roku 2015 už 12 bodov (obr. 3) stabilizovaných spôsobom umožňujúcim merané údaje využiť aj pre výskum (monitoring) prejavov geodynamiky na povrchu Zeme. Do siete je zaradených 7 špecializovaných geodetických bodov, ktoré sú realizované ako hĺbkové stabilizácie ukotvené až do 10 m hĺbky so stabilizovanou geodetickou značkou. Ďalších 5 geodetických bodov realizovaných tyčovou stabilizáciou v roku 2014 je ukotvených v hĺbke 5 m. Je predpoklad, že po viacročnom permanentnom meraní na týchto bodoch by sa dali získať spoľahlivé údaje o rýchlostnej charakteristike týchto bodov (lokality).

Obr. 3 Rozmiestnenie špeciálnych stabilizácii v SKPOS na území Slovenska

Najstarším bodom – stanicou *GNSS* je *MOPI* (obr. 4), v lokalite Modra – Piesok, stabilizovaný na skalnom hrebeni Tisových skál, a to od 17.11.1996 (880. GPS týždeň). *GPS týždeň* (*GPS WEEK*) je oficiálne datovanie týždňov od spustenia NAVSTAR GPS, používané na ukladanie údajov a riešenia. Od 24.8.2008 (1494. GPS týždeň) je permanentne meraný bod MOP2, stabilizovaný vedľa pôvodného bodu na skale pilierom. Tieto body spravuje Katedra geodetických základov Stavebnej fakulty STU v Bratislave. Rezortný (GKÚ) bod je v lokalite Gánovce pri Poprade (obr. 5) a observácie sú vykonávané od 16.11.2003 (1245. GPS týždeň). Bod *BBYS* v lokalite Banská Bystrica, ktorý pracuje od 4.02.2007 (1413. *GPS* týždeň), je štvrtým bodom, z ktorého sú údaje v reálnom čase zasielané aj do Európskej permanentnej siete (*EPN* - Euref Permanent Network), ktorú riadi Európska komisia pre referenčné rámce (*EUREF*) pracujúca v Medzinárodnej asociácii geodetov (*IAG*). Pre body MO-PI, MOPI2, GANP a BBYS sú monitoring a určenie rýchlostí spracovávané v rámci EPN *GNSS*.

Obr. 4 Body MOPI (1996) a susedný bod pilier MOP2 (2008)- *stanice SKPOS*

Obr. 5 Body GANP a BBYS - stanice SKPOS

2.1 Permanentný monitoring zmien na geodetických bodoch technológiou GNSS v EPN

Európska sieť permanentných staníc *GNSS* dnes spracováva údaje z cca 280 staníc *GNSS*. Na obr. 6 je schéma rozmiestnenia staníc *EPN* zo stredoeurópskej časti, z ktorých viaceré sú zaradené i do svetovej siete (<u>http://www.epncb.oma.be/_networkdata/stationmaps.php</u>) permanentných staníc IGS.

Výsledky monitoringu sú spracované pre jednotlivé body *EPN* vzhľadom na Medzinárodný (svetový) terestrický referenčný rámec - *ITRF2008*, Európsky terestrický referenčný rámec - *ETRF89*. Údaje zo slovenských staníc v Modre - Piesku (*MOP1*, *MOP2*), v Gánovciach pri Poprade (*GANP*) a Banskej Bystrici (*BBYS*) sú prezentované v grafoch a upravené o periodické chyby so znázorneným pohybom bodov v grafoch na obr. 7, 8, 9, 10 (<u>http://www.epncb.oma.be/_productsservices/timeseries/</u>).

Obr. 6 Rozmiestnenie permanentných staníc EPN k 31.12.2015 a výber staníc EPN zaradených do svetovej siete IGS.

Obr. 7 Znázornenie pohybu bodu MOPI v ETRS89

Obr. 8 Znázornenie pohybu bodu MOP2 v ETRS89

Obr. 9 Znázornenie pohybu bodu GANP v ETRS89

Obr. 10 Znázornenie pohybu bodu BBYS v ETRS89

Na obr. 11, 12, 13 a 14 (<u>http://www.epncb.oma.be/_productsservices/timeseries/</u>) sú grafy pohybu bodov v *ITRF2008*.

Obr. 11 Znázornenie pohybu bodu MOPI v ITRS

Obr. 12 Znázornenie pohybu bodu MOP2 v ITRS

Obr. 13 Znázornenie pohybu bodu GANP v ITRS

Obr. 14 Znázornenie pohybu bodu BBYS v ITRS

Na jednotlivých obrázkoch sú znázornené v grafe zmeny polohy bodu – stanice uvedenej v mm, a to v smere zemepisných osí sever (N) – juh (S), východ (E) – západ (W) a vo výške (U). Vodorovná os predstavuje časovú os datovanú v *GPS* týždňoch. *GPS* týždeň sa datuje od vzniku systému *GPS NAVSTAR*; zvislá v optimalizovanej mierke zmenu bodu v mm. Zobrazované hodnoty v grafoch sú vždy z týždenných riešení. Zvislé priamky v tabuľkách určujú zmenu referenčného rámca (frame) *ITRF*xx (fialovobodková priamka), zmenu antény (červená priamka) a zmenu prijímača, resp. upgrade firmwaru (zelená priamka).

Z upravených údajov sú v *EPN* odhadnuté rýchlosti pohybu pre body – stanice *GNSS*. Jednotlivým riešeniam je odhadnutá rýchlosť k epoche, do ktorej sú zahrnuté kumulatívne údaje v smere zemepisných osí sever (N - North) – východ (E - East) – a vo výške (U - up). Rýchlosť je vypočítaná pre body, ktoré sú zaradené do triedy "A".

Grafy znázornenia pohybov bodov (MOPI, GANP, BBYS) v medzinárodnom terestrickom referenčnom systéme (ITRS) majú zhodný trend na našom e území ako na väčšine staníc EP-Ne. Za obdobie posledných 10 rokov sme zmerali pohyb v severno – východnom smere približne 13 cm. Tento trend majú aj ostatné permanentne stanice SKPOS. Výšková zložka má väčšie odchýlky ale celkový trend je skoro nulový. To je i dôvod na používanie ETRS pri monitoringu v rámci Európy.

Na základe súčasných výsledkov z monitoringu pomocou technológie *GNSS* si dovolíme konštatovať, že krátka doba epochy (pod 6 rokov) dala skresľujúce výsledky – náznaky pohybu bodov. Po spracovaní dlhšej epochy , môžeme vidieť, že pozorované body sú stabilné v rámci euroázijskej platne (tab. 1) [3] a ich rýchlosť nepresahuje 1 mm/ v rámci Eurázijskej platne. Ak odhadnutou rýchlosťou, u našich bodoch 0,000 4 mm/rok v polohe si určíme obdobie meranie – 10 rokov, dostávame výsledok zhodný s trendom vyplývajúcim z grafov.

MOPI00SVK - 11507M001 - trieda "B"

ETRF2000		on on t		Position (m)		Velocity (m/y)				
		epoch 10	Х	Y	Z	V _X	V _Y			
	193/1998 - 093/2016	236/2006	4053738.201 ± 0.000	1260571.378 ± 0.000	4744940.660 ± 0.000	NA	NA			
	144/1998 - 192/1998	137/1999	4053738.198 ± 0.001	1260571.376 ± 0.001	4744940.654 ± 0.002	NA	NA			
	074/1998 - 136/1998	038/1999	4053738.152 ± 0.001	1260571.369 ± 0.000	4744940.599 ± 0.001	NA	NA			
	159/1997 - 073/1998	199/1998	4053738.179 ± 0.001	1260571.373 ± 0.000	4744940.630 ± 0.001	NA	NA			
	040/1997 - 158/1997	005/1998	4053738.169 ± 0.001	1260571.371 ± 0.000	4744940.617 ± 0.001	NA	NA			
	162/1006 020/1007	164/1007	4052729 199 ± 0.001	1260571 276 ± 0.000	4744040 620 ± 0.001	NA	NA			

EPN_B_ETRF2000_C1890.SSC - EPN_B_IGb08_C1890.SSC (June 16, 2016)

MOP200SVK - 11507M002 - trieda "A"

EPN_A_ETRF2000_C1890.SSC - EPN_A_IGb08_C1890.SSC (June 16, 2016)

ETRF2000	anach t		Position (m)	Velocity (m/y)			
	epoch t ₀	Х	Y	Z	V _X	V _Y	VZ
230/2008 - 093/2016	001/2005	4053742.961 ± 0.000	1260569.436 ± 0.000	4744939.947 ± 0.000	0.0001 ± 0.0000	0.0001 ± 0.0000	0.0004 ± 0.0000

GANP00SVK - 11515M001 - trieda "A"

EPN_A_ETRF2000_C1890.SSC - EPN_A_IGb08_C1890.SSC (June 16, 2016)

ETDE2000	onoch t		Position (m)	Velocity (m/y)			
ETRF2000	epoch to	Х	Y	Z	V _X	V _Y	VZ
046/2015 - 093/2016	001/2005	3929181.849 ± 0.001	1455236.520 ± 0.000	4793653.712 ± 0.001	0.0004 ± 0.0000	-0.0010 ± 0.0000	-0.0010 ± 0.0001
239/2006 - 045/2015	001/2005	3929181.848 ± 0.000	1455236.515 ± 0.000	4793653.703 ± 0.000	0.0004 ± 0.0000	-0.0010 ± 0.0000	-0.0010 ± 0.0001
286/2003 - 232/2006	001/2005	3929181.865 ± 0.000	1455236.517 ± 0.000	4793653.711 ± 0.000	0.0004 ± 0.0000	-0.0011 ± 0.0000	-0.0010 ± 0.0001

BBYS00SVK - 11514M001 - trieda "A"

EPN_A_ETRF2000_C1890.SSC - EPN_A_IGb08_C1890.SSC (June 16, 2016)

ETDE2000	enoch t-		Position (m)	Velocity (m/y)			
ETRF2000	epoch to	Х	Y	Z	VX	V _Y	VZ
214/2015 - 093/2016	001/2005	3980359.147 ± 0.001	1382291.873 ± 0.000	4772771.761 ± 0.001	-0.0003 ± 0.0001	-0.0006 ± 0.0000	-0.0007 ± 0.0001
260/2012 - 140/2015	001/2005	3980359.143 ± 0.001	1382291.874 ± 0.000	4772771.771 ± 0.001	-0.0003 ± 0.0001	-0.0006 ± 0.0000	-0.0007 ± 0.0001
016/2005 - 252/2012	001/2005	3980359.127 ± 0.000	1382291.867 ± 0.000	4772771.750 ± 0.000	-0.0003 ± 0.0001	-0.0006 ± 0.0000	-0.0007 ± 0.0001
185/2003 - 015/2005	001/2005	3980359.114 ± 0.000	1382291.863 ± 0.000	4772771.735 ± 0.001	-0.0003 ± 0.0001	-0.0006 ± 0.0000	-0.0007 ± 0.0001

Obr. 15 Horizontálne rozdiely (vľavo) a vertikálne rozdiely z 70 staníc (aj GANP) medzi oficiálnymi ETRF súradnicami a dopĺňaným riešením z EPN

NA NA NA NA

3. Pohyby pozdĺž zlomov

Mechanicko-optický dilatometer *TM-71* (Košťák, 1969) je prístroj schopný zaznamenávať 3D mikroposuny v prípade svahových porúch typu plazenia a zosúvania (napr. Košťák & Rybář, 1978; Kostak & Cruden, 1990; Petro et al., 1999), ale aj historických objektov (napr. Vlčko, 2002; Vlčko & Petro, 2002; Vlčko, 2004; Vlčko et al., 2009). Použitie dilatometrov na sledovanie mikroposunov na aktívnych tektonických poruchách začalo pred takmer 30-timi rokmi v Bulharsku (Avramova-Tacheva et al., 1984) a pokračovalo v Českej republike (napr. Košťák, 1998; Stepančíková et al., 2008), Slovenskej republike (napr. Petro et al., 2004; Briestenský & Stemberk, 2008, Briestenský et al., 2007, 2010, 2011, 2014), Poľsku (napr. Kontny et al., 2005), Taliansku (Borre et al., 2003), Peru (Košťák et al., 2002), Grécku (napr. Drakatos et al., 2005; Stemberk & Košťák, 2007), Slovinsku (napr. Šebela et al., 2005; Gosar et al., 2009), Nemecku, Kirgizsku a na Špicbergoch (Stemberk et al., 2015).

3.1 Základná charakteristika monitorovacej siete

Pohyby pozdĺž zlomov boli v roku 2015 sledované pomocou dilatometrov typu TM-71 osadených v 6 lokalitách: Branisko, Demänovská jaskyňa, Ipeľ, Banská Hodruša, Vyhne a Dobrá Voda (obr. 16).

Obr. 16 Prehľad lokalít, na ktorých boli v roku 2015 monitorované neotektonické poruchy na území SR dilatometrami TM-71. 1 – Branisko, 2 – Demänovská jaskyňa Slobody, 3 – Ipeľ, 4 – Banská Hodruša-Hámre, 5 – Vyhne, 6 – Dobrá Voda

Branisko

Lokalitu reprezentuje úniková štôlňa tunela Branisko, presnejšie šindliarsky zlom, ktorý prechádza východným okrajom pohoria Branisko. Zlom má smer SSV – JJZ a oddeľuje sedimenty centrálnokarpatského paleogénu (podtatranská skupina) od kryštalinika tatrika – severného veporika (Polák a Jacko, 1996). Na tomto styku bol koncom roka 2000 inštalovaný jeden dilatometer *TM-71* (obr. 17).

Obr. 17 Inštalácia dilatometra TM-71 v únikovej štôlni tunela Branisko

Demänovská jaskyňa Slobody

Jaskyňa je súčasťou takmer 40 km dlhého, niekoľkoúrovňového krasového systému nachádzajúceho sa na pravej strane doliny riečky Demänovka. Jaskynný systém je najdlhší na Slovensku. Morfologicky je okolie jaskyne súčasťou Nízkych Tatier, ktorých územie je dnes národným parkom. Pohorie je budované tromi tektonickými jednotkami – tatrikom, fatrikom a hronikom (Biely et al., 1992). Tatrikum ako subautochtónna jednotka zahŕňa kryštalický fundament a obalové mezozoické jednotky. Ďalšie dve príkrovové štruktúry sú v príkrovovej pozícii a sú tvorené väčšinou vápencami a dolomitmi. Paleogénne sedimenty v širšom okolí jaskyne sú súčasťou posttektonickej výplne Liptovskej kotliny. Jaskyňa vznikla v strednotriasových vápencoch krížňanského príkrovu fatrika dlhodobým podpovrchovým pôsobením riečky Demänovka. Podzemné chodby a priestory sa viažu na dva zlomové systému s orientáciou SZ-JV a SV-JZ (Droppa, 1957 a 1972). Prvý systém je kvázi-paralelný s hlavným jaloveckým zlomom (Hók et al., 2000) prechádzajúcim dnom údolia. Dilatometer *TM-71* bol inštalovaný v tzv. Čarovnej chodbe (obr. 18), ktorá má približne smer SZ-JV.

Obr. 18 Inštalácia dilatometra TM-71 v Čarovnej chodbe (Demänovská jaskyňa Slobody)

Ipel'

Lokalitu reprezentuje dolina horného toku Ipľa nad obcou Ipeľ, ktorá geomorfologicky patrí do Stolických vrchov. Dolinou rieky prechádza jeden z najvýznamnejších zlomových systémov Západných Karpát – muránsko-malcovský systém (Pospíšil et al., 1986; Dvořák et al., 2005), resp. jeho južnejšia časť v podobe muránsko - divínskeho systému, ktorý pozostáva z niekoľkých paralelných SV-JZ zlomov (Pospíšil et al., 1989). Dolina Ipľa je budovaná staropaleozoickými metamorfovanými (pararuly, ortoruly a migmatity) a magmatickými (granity, granodiority, tonality a aplity) horninami kryštalického jadra veporika (Bezák et al., 1999). Horniny vo vnútri zlomového pásma širokého viac než 600 m sú silno tektonicky porušené a mylonitizované (Ondrášik et al., 1987). Na jednom zlome systému, v bývalej prieskumnej štôlni Izabela, bol v roku 2002 inštalovaný dilatometer *TM-71* (obr. 19).

Obr. 19 Inštalácia dilatometra TM-71 v prieskumnej štôlni Izabela na lokalite Ipeľ

Banská Hodruša (Hámre)

Lokalita sa nachádza v Štiavnických vrchoch, asi 9 km na Z od Banskej Štiavnice. Na inštaláciu dilatometra *TM-71* (obr. 20) bolo vybraté miesto križovania dvoch zlomov (SV-JZ a

Obr. 20 Inštalácia dilatometra TM-71 v opustenej štôlni Všechsvätých (stará) na lokalite Banská Hodruša (Hámre)

SZ-JV) vo vnútri štôlne Všechsvätých (stará). Štôlňa je vyrazená v kremenno-dioritových porfýroch reprezentujúcich strednú stratovulkanickú štruktúru (Konečný et al., 1998). Orientácia zlomov a horninových dajok v banskoštiavnickom stratovulkáne odráža zmeny v smeroch paleonapätí počas neogénu (Nemčok et al., 2000). Väčšina zlomov má orientáciu SSV-JJZ.

Vyhne

Lokalita sa nachádza asi 9 km na SZ od Banskej Štiavnice a je súčasťou banskoštiavnického stratovulkánu. Dilatometer *TM-71* bol inštalovaný v roku 2005 na S-J zlomovej poruche vo vnútri opustenej štôlne sv. Anton Paduánsky (obr. 21). Štôlňa bola vyrazená v tektonicky porušených porfyrických granodioritoch (tzv. vyhnianska drvená žula). Výhodou tejto lokality okrem vhodných mikroklimatických podmienok (stabilná teplota a vlhkosť) je prítomnosť seizmometra (Geofyzikálny ústav SAV / od 1. 7. 2015 Geofyzikálny odbor ÚVZ SAV), čo umožňuje koreláciu výsledkov monitoringu so seizmickými udalosťami v regióne a jeho širšom okolí. Zber údajov bol realizovaný v spolupráci s Geofyzikálnym odborom ÚVZ SAV.

Obr. 21 Inštalácia dilatometra TM-71 v opustenej štôlni sv. Anton Paduánsky na lokalite Vyhne

Dobrá Voda

Lokalita sa nachádza v severnej časti Malých Karpát južne od Brezovej pod Bradlom. Morfologicky ide o dobrovodskú depresiu, ktorou prechádza zlom smeru SV-JZ. Podľa Maglay et al. (1999) bol zlom aktívny od stredného pleistocénu do holocénu. Oblasť Dobrej Vody je známa ako seizmicky aktívna. V minulosti tu bolo zaznamenané jedno z najsilnejších zemetrasení na našom území. Najsilnejšie známe zemetrasenie z 9. 1. 1906 v okolí Dobrej Vody malo epicentrálnu intenzitu I_0 = 8,5° MSK-64 (23 hod 07 min, 48,58° N, 17,46° E, h = 10 km, M_L = 5,7). V máji roku 2004 bol Ústavom struktury a mechaniky hornin Akademie Věd ČR, v. v. i. Praha na zlome inštalovaný jeden dilatometer *TM-71* (obr. 22).

Obr. 22 Inštalácia dilatometra TM-71na tektonickej poruche na lokalite Dobrá Voda

3.2 Pozorované ukazovatele a metódy ich hodnotenia

Na monitorovanie posunov na vybratých neotektonických poruchách sa v rámci danej úlohy aj v roku 2015 používali mechanicko-optické dilatometre typu *TM-71* (obr. 23). Prístrojom je možné merať veľmi pomalé posuny, t. j. $\leq 0,01$ mm a rotácie 0,01 gr. Merania sa realizujú v dvoch na seba kolmých rovinách, takže výpočtami možno zistiť priestorový pohyb (3D) oboch monitorovaných blokov. Na spracovanie nameraných údajov sa používa špeciálna aplikácia MSDilat (Stercz, 2004) programovaná v jazyku Delphi pre platformu MS Windows.

Obr. 23 Mechanicko-optický dilatometer typu TM-71

Dilatometrami typu *TM-71* sa v roku 2015 zabezpečoval zber údajov na všetkých lokalitách vizuálnym odčítaním, resp. fotograficky s frekvenciou 10x (Vyhne), 5x (Branisko a Demänovská jaskyňa Slobody), 4x Banská Hodruša (Hámre) a Ipeľ a 2x (z organizačnotechnických dôvodov) Dobrá Voda. Treba uviesť, že 4 merania ročne sa pre daný typ prístroja považujú za minimálne kvôli dostatočne presnej interpretácii výsledkov vzhľadom na sezónnu dilatáciu masívu a koreláciu výsledkov so seizmickými udalosťami. Z tohto dôvodu by bolo vhodné realizovať na všetkých lokalitách najmenej 4 merania ročne i v nasledujúcich rokoch.

3.3 Výsledky monitorovania

Branisko

Výsledky meraní potvrdili aj v roku 2015 pretrvávajúci a zreteľný trend narastania šmykového pohybu pozdĺž šindliarskeho zlomu (v smere osi *y*). Berúc do úvahy vzájomnú priestorovú orientáciu dilatometra a monitorovaného zlomu je tento pohyb interpretovaný ako pravostranný. Jeho celková hodnota dosiahla v septembri hodnotu 1,575 mm (obr. 24). "Spätný posun" na úroveň 1,499 mm (október) možno vysvetliť ako osciláciu zapríčinenú väčším výkyvom teploty. Merania v roku 2016 celkový trend potvrdili. Oproti roku 2014 narástol posun o 0,076 mm. Pohyb je progresívny a jeho priemerná rýchlosť je 0,105 mm.rok⁻¹. Šmy-kový pohyb už v minulosti spôsobil vznik niekoľkých trhlín po oboch stranách zlomu v sa-motnej tunelovej rúre. Otváranie trhliny (pohyb v smere osi *x*) je veľmi pomalé, avšak jeho dlhodobý trend

Obr. 24 Posun tektonických blokov pozdĺž šindliarskeho zlomu (osi x, y, z) zaznamenaný dilatometrom TM-71 za obdobie rokov 2000 – 2015

je zrejmý. Celkové otvorenie na konci roku 2015 dosiahlo 0,126 mm. V porovnaní s rokom 2014 išlo o stagnáciu pohybu. Pokles východného bloku (hanging wall) stagnoval aj v roku 2015, a to na úrovni 0,246 mm. Hoci trend rotačného pohybu v oboch rovinách (*XY*, *XZ*) je zrejmý (obr. 25), ide o zanedbateľné hodnoty (cca 0,2 gr). Rotácia východného bloku prebieha proti smeru pohybu hodinových ručičiek, t. j. na JJZ.

Obr. 25 Rotácie tektonických blokov vo vodorovnej (XY) a zvislej rovine (XZ) zaznamenané dilatometrom TM-71na šindliarskom zlome za obdobie rokov 2000 – 2015.

Vzhľadom na významnosť lokality je potrebné ďalšie sledovanie pohybu na zlome. Národná diaľničná spoločnosť (NDS), ako prevádzkovateľ tunela, je každoročne oboznamovaná formou krátkej správy o vývoji pohybov na zlome. V prípade výrazného zvýšenia pohybovej aktivity bude NDS okamžite poskytnutá príslušná informácia.

Demänovská jaskyňa Slobody

Od inštalácie dilatometra (august 2001) na zlome SZ-JV smeru je zrejmá mierna pohybová aktivita pozdĺž všetkých troch osí x, y a z (obr. 26). Slabý, ale najvýznamnejší pohyb, bol zistený v smere osi z (vertikálny pohyb pozdĺž zlomovej poruchy), ktorý je interpretovaný ako pokles východného bloku (hanging wall). V roku 2015 sa opäť zmenil trend pohybu oproti obdobiu 2010 – 2014. Z dlhodobého hľadiska ide o typické oscilácie v pohybovej aktivite (roky 2008, 2011). Celkový pokles koncom roka 2015 dosiahol 0,121 mm. Otváranie trhliny (posun

v smere osi *x*) aj šmykový pohyb pozdĺž zlomovej poruchy (os *y*) v roku 2015 mierne vzrástli. Nárast v prvom prípade (os *x*) bol o 0,018 mm na celkových 0,052 m, v druhom prípade (os *y*)

Obr. 26 Posun tektonických blokov pozdĺž jaloveckého zlomu (osi x, y a z) zaznamenaný dilatometrom TM-71 na lokalite Demänovská jaskyňa Slobody za obdobie rokov 2001 – 2015.

o 0,026 mm na celkových 0,038 mm. Z dlhodobého hľadiska je trend pohybu zreteľný. Šmykový pohyb sa interpretuje ako pravostranný.

Rotácie blokov v horizontálnej (*XY*) i vertikálnej (*XZ*) rovine sú zatiaľ zanedbateľné (obr. 27). V priestore indikujú rotácie pravotočivý pohyb východného bloku.

Obr. 27 Rotácie tektonických blokov vo vodorovnej (XY) a zvislej rovine (XZ) zaznamenané dilatometrom TM-71 na jaloveckom zlome za obdobie rokov 2001 – 2015.

Ipel'

Trend dlhodobého pomalého poklesávania JV bloku je zreteľný (obr. 28). V roku 2015 dosiahol celkový pokles hodnotu 1,867 mm (v septembri až 1,936 mm), čo predstavuje nárast oproti roku 2014 o 0,1 mm. Pomalý šmykový pohyb pozdĺž zlomu (os *y*), ako aj otváranie trhliny (os *x*) stagnujú od konca roku 2009. Celkové doterajšie posuny pozdĺž týchto osí sa pohybujú okolo 0,2 mm. Rotácie blokov v rovinách *XY* a *XZ* sú zanedbateľné (obr. 29).

Obr. 28 Posun tektonických blokov pozdĺž jedného z muránskych zlomov (osi x, y, z) zaznamenaný dilatometrom TM-71 v štôlni Izabela na lokalite Ipeľ za obdobie rokov 2002 – 2015

Obr. 29 Rotácie tektonických blokov vo vodorovnej (XY) a zvislej rovine (XZ) zaznamenané dilatometrom TM-71 v štôlni Izabela na lokalite Ipeľ za obdobie rokov 2002 – 2015

Banská Hodruša – Hámre

Merania mikroposunov na danej lokalite nepreukázali ani v roku 2015 žiadny významnejší pohyb blokov v smere osí *z* (pokles) a *y* (šmykový posun) (obr. 30). Koncom roka (október) bol zaznamenaný istý pohyb (0,15 mm) v smere osi x (otváranie tektonickej poruchy). Rotácie blokov v horizontálnej (*XY*) i vertikálnej (*XZ*) rovine sú zanedbateľné (obr. 31).

Obr. 30 Posun tektonických blokov na monitorovanom zlome (osi x, y z) zistený dilatometrom TM-71 v štôlni Všechsvätých (stará) lokalite Banská Hodruša - Hámre za obdobie rokov 2005 – 2015

Obr. 31 Rotácie tektonických blokov vo vodorovnej (XY) a zvislej rovine (XZ) zistené dilatometrom TM-71 v štôlni Všechsvätých (stará) na lokalite Banská Hodruša-Hámre za obdobie rokov 2005 – 2015

Vyhne

V roku 2015 sa opäť potvrdil trend narastania ľavostranného šmykového pohybu (os *y*), t. j. pohybu pozdĺž zlomovej poruchy (obr. 32). Celkový posun v tomto smere dosiahol cca 0,862 mm, čo predstavuje nárast oproti roku 2014 o 0,169 mm. Otváranie trhliny v roku 2014 pokračovalo, avšak len veľmi pomaly. Hodnota celkového otvorenia dosiahla 0,011 mm. Po-klesávanie jedného z blokov stagnovalo aj v roku 2015. Doposiaľ namerané rotácie blokov v oboch rovinách (*XY* a *XZ*) sú bezvýznamné (obr. 33).

Obr. 32 Posun tektonických blokov na monitorovanom zlome (osi x, y, z) zaznamenaný dilatometrom TM-71 v štôlni sv. Anton Paduánsky na lokalite Vyhne za obdobie rokov 2005 – 2015

Obr. 33 Rotácie tektonických blokov vo vodorovnej (XY) a zvislej rovine (XZ) zaznamenané dilatometrom TM-71 v štôlni sv. Anton Paduánsky na lokalite Vyhne za obdobie rokov 2005 – 2015 Dobrá Voda

Aj v roku 2015 pokračovala na tejto lokalite spolupráca s Ústavom struktury a mechaniky hornín Akademie Věd ČR v Prahe. Kvôli organizačno-technickým problémom sa českým kolegom na tejto lokalite podarilo realizovať len dve merania (január a apríl). Z interpretácie poskytnutých údajov je zrejmé, že aj v roku 2015 pokračoval doterajší trend pozvoľného otvárania trhliny (os x) a pomalého ľavostranného šmykového posunu (os y) (obr. 34). Trendy sú zrejmé aj napriek silnému kolísaniu hodnôt spôsobenému sezónnymi výkyvmi teploty. Priemerný ročný nárast otvárania trhliny dosahuje cca 0,063 mm, nárast v roku 2015 predstavoval 0,169 mm. Pokles jedného z blokov (os z) sa oproti roku 2014 výraznejšie nezmenil a jeho celková hodnota v roku 2015 neprekročila 0,1 mm.

Obr. 34 Posun tektonických blokov na monitorovanom zlome (osi x, y, z) zaznamenaný dilatometrom TM-71 na lokalite Dobrá Voda za obdobie rokov 2004 – 2015

Z grafu rotácií (obr. 35) je evidentný pokračujúci trend otáčania v oboch navzájom kolmých rovinách (*XY* a *XZ*), ktorý však dosahuje iba minimálne hodnoty. Výkyv v rotácii v rovine *XY* na konci roka 2012 veľmi dobre korešponduje so slabým zemetrasením (M = 1,6) zaznamenaným 18. 11. 2012 pri Chtelnici. Jeho epicentrum bolo iba pár kilometrov na SZ od obce, teda v smere k Dobrej Vode.

Obr. 35 Rotácie tektonických blokov vo vodorovnej (XY) a zvislej rovine (XZ) zaznamenané dilatometrom TM-71 na lokalite Dobrá Voda za obdobie rokov 2004 – 2014

Výsledky meraní posunov a súvislosť so seizmickou aktivitou územia do roku 2010 v oblasti Malých Karpát boli sumarizované v publikáciách Briestenský et al. 2007 a 2010.

3.4 Diskusia

Výsledky dlhodobého monitorovania posunov na vybratých neotektonických poruchách na území SR, resp. v roku 2015 dilatometrami typu *TM-71* možno zhrnúť do nasledovných bodov:

1. Na väčšine lokalitách sa v roku 2015 prejavili recentné tektonické pohyby, avšak rôznej intenzity. Najvýraznejší pohyb bol zaznamenaný na lokalitách Branisko, Ipeľ a Vyhne.

2. Menšie posuny boli zistené na lokalitách Demänová, Banská Hodruša a Dobrá Voda.

3. Výsledky monitoringu majú veľký praktický význam z hľadiska stability najmä na lokalitách Ipeľ (plánovaná výstavba prečerpávacej vodnej elektrárne s výkonom cca 700 MW), Branisko (diaľničný tunel v prevádzke) a Demänovská jaskyňa Slobody (národná prírodná pamiatka, jeden z najnavštevovanejších turistických objektov v SR).

Vzhľadom na uvedenú dôležitosť lokalít navrhujeme s pokračovaním monitorovacích prác aj v roku 2016 a s frekvenciou meraní minimálne 4x za rok.

4. Monitorovanie seizmických javov

Seizmické javy na území Slovenskej republiky sú monitorované seizmickými stanicami Národnej siete seizmických staníc (NSSS), ktorej prevádzkovateľom je Geofyzikálny odbor Ústavu vied o Zemi Slovenskej akadémie vied. Národná sieť seizmických staníc je tvorená 13 seizmickými stanicami (tab. 2, obr. 36):

Bratislava - Železná studnička (ZST)	Kolonické sedlo (KOLS)
Červenica (CRVS)	Liptovská Anna (LANS)
Vyhne (VYHS)	Izabela (IZAB)
Modra – Piesok (MODS)	Moča (SRO2)
Hurbanovo (HRB)	Stebnícka Huta (STHS)
Iža (SRO1)	Šrobárová (SRO)
Kečovo (KECS)	

Tab. 2 Národná sieť seizmických staníc na území SR (stav v roku 2016)

Obr. 36 Seizmické stanice na území Slovenska - stav v roku 2015.

Na seizmických staniciach sa pomocou seizmometrov zaznamenáva rýchlosť pohybu pôdy. Všetky seizmické stanice sú registrované v International Seismological Centre, ISC, vo Veľkej Británii. Na staniciach ZST, CRVS, VYHS, KOLS a MODS sú nainštalované širokopásmové seizmometre, ostatné seizmické stanice sú vybavené krátkoperiodickými seizmometrami, seizmická stanica HRB strednoperiodickým seizmometrom.

Na území Slovenska sú okrem NSSS v prevádzke aj lokálne seizmické siete v okolí atómových elektrární Mochovce a Jaslovské Bohunice, ktoré prevádzkuje spoločnosť Progseis v Trnave. Na východnom Slovensku bola vybudovaná lokálna sieť seizmických staníc, ktorú prevádzkuje FMFI UK v Bratislave. Zemepisné súradnice jednotlivých seizmických staníc NSSS, spolu s nadmorskou výškou a technickými parametrami a pokrytie územia Slovenskej republiky seizmickými stanicami, sú znázornené v tab. 3.

Stanica	ISC kód	Zem. šírka [⁰N]	Zem. dĺžka [⁰E]	Nadm. výška [m]	Seizmo- meter	DAS	Vzorkovacia frekvencia [údaj/sek.]	Registrá- cia, prenos údajov	Dátový formát
Bratislava Žel. Stud.	ZST	48.196	17.102	250	3x SKD	Wave24	100	a, ase	
Červenica	CRVS	48.902	21.461	476	STS-2	Wave24	100	uáln m č	ΈD
Vyhne	VYHS	48.493	18.836	450	Gurapl- 6T-30s	Wave24	100	ontinı eálno	mSE
Modra - Piesok	MODS	48.373	17.277	520	STS-2	SEMS	100	ko v ru	
Hurbanovo	HRB	47.873	18.192	115	2x Mainka	Analog	-	začadený pa- pier,off-line	-
Iža	SRO1	47.762	18.238	111	LE3D	PCM	20		
Kečovo	KECS	48.483	20.486	345	Gurapl- 40T-1s	Wave24	100		
Kolonické sedlo	KOLS	48.933	22.273	460	STS-2	Wave32	100	r,	
Izabela	IZAB	48.569	19.713	450	3x SM3	Wave24	100	álna n ča	Ð
Liptovská Anna	LANS	49.151	19.468	710	LE3D	SEMS	100	ontinu eálnor	mSEI
Moča	SRO2	47.763	18.394	109	Gurapl- 40T-1s	Wave24	100	k vr	
Stebnícka Huta	STHS	49.417	21.244	534	LE3D	Wave24	100		
Šrobárová	SRO	47.813	18.313	150	3x SKM-3	Wave24	100		

Tab. 3 Charakteristiky seizmických staníc Národnej siete seizmických staníc SR

4.1 Dátové a spracovateľské centrum

Dátové a spracovateľské centrum Národnej siete seizmických staníc je v ÚVZ SAV Bratislava. Centrum v reálnom čase zhromažďuje zaznamenané údaje zo staníc Národnej siete a z vybraných staníc okolitých krajín. Celkovo sú v reálnom čase k dispozícii údaje z cca 55 seizmických staníc tvoriacich Regionálnu virtuálnu seizmickú sieť GFÚ SAV.

Dátové a spracovateľské centrum vykonáva automatické lokalizácie, ktoré sú k dispozícii do 10 minút po zaznamenaní seizmického javu. V ďalšom kroku je vykonávaná manuálna analýza, v rámci ktorej sú pre každý seizmický jav určené časy príchodov jednotlivých druhov seizmických vĺn (fáz) a pre vybrané zemetrasenia sú určené amplitúdy a periódy vybraných fáz, vypočítané magnitúda a vykonaná lokalizácia. *V roku 2015 bolo zo záznamov seizmických staníc interpretovaných 9362 teleseizmických, regionálnych alebo lokálnych seizmických javov a určených bolo viac ako 38600 seizmických fáz.*

Ústav vied o Zemi SAV zhromažďuje a analyzuje okrem seizmometrických údajov aj makroseizmické údaje o zemetraseniach. Makroseizmické údaje charakterizujú účinky zemetrasenia na ľuďoch, predmetoch, stavbách a prírode. Ak má zemetrasenie makroseizmické

účinky na území Slovenska, ÚVZ SAV vykonáva zber makroseizmických pozorovaní od občanov formou vyplnených makroseizmických dotazníkov prostredníctvom internetu, e-mailovej komunikácie alebo poštou.

Údaje obsiahnuté v makroseizmických dotazníkoch a prípadné ďalšie údaje sú vyhodnocované podľa 12 stupňovej makroseizmickej stupnice EMS-98. Pre každú lokalitu, z ktorej sú dostupné makroseizmické údaje, je určená makroseizmická intenzita.

4.2 Seizmometricky lokalizované zemetrasenia s epicentrom na území SR

V roku 2015 bolo na základe záznamov seizmických staníc NSSS seizmometricky lokalizovaných 69 zemetrasení s epicentrom na území Slovenskej republiky. Parametre týchto zemetrasení boli určené na základe interpretácií seizmických záznamov zo staníc NSSS a ďalších staníc Virtuálnej siete seizmických staníc ÚVZ SAV využitím softvérového balíka Seismic-Handler. Interpretácie záznamov zo seizmických staníc NSSS (určené seizmické fázy, časy príchodov a epicentrálna vzdialenosť pre danú seizmickú stanicu) sú archivované v databáze ÚVZ SAV.

Výsledné parametre lokalizovaných zemetrasení s epicentrom na území Slovenskej republiky a zobrazenie geografických polôh epicentier týchto zemetrasení sú v tab. 4 a na obr. 37.

Dož	Čas (UTC)	Geografické súradnice		Hĺbka	м	I I akalita / ablast'		
Dell	hh:mn:sec	dĺžka	šírka	(km)	IVI L	I _{0 (EMS} LOKAIITA / ODIAST		
Január								
2	03:18:33.03	48.90 N	18.33 E	0	0.8	Strážovské vrchy		
26	20:01:02.19	48.78 N	19.16 E	0	0.4	Horehronie		
27	04:00:49.73	48.79 N	19.37 E	0	1.4	Horehronie		
28	23:41:22.44	47.79 N	17.75 E	2.2	1.5	Šamorín-Komárno-Štúrovo		
29	01:29:05.44	48.61 N	17.56 E	0.2	0.7	Malé Karpaty		
31	01:54:00.48	48.36 N	18.81 E	15.5	-	Štiavnické vrchy		
Februá	r							
4	13:22:49.40	48.55 N	17.54 E	0	1.1	Malé Karpaty		
6	09:35:27.30	48.49 N	17.32 E	5.2	0.1	Malé Karpaty		
13	05:42:23.06	48.72 N	20.05 E	0	0.9	Muránska planina		
17	03:21:18.48	48.71 N	20.08 E	0	1.1	Muránska planina		
22	09:26:00.63	48.58 N	17.36 E	2.3	0.3	Malé Karpaty		
Marec								
2	15:27:32.25	48.13 N	17.58 E	0	1.6	Šamorín-Komárno-Štúrovo		
7	10:25:02.81	48.83 N	22.20 E	6.9	0.9	Vihorlatské vrchy		
20	10:05:16.81	49.37 N	18.93 E	0	0.7	Kysuce		
Apríl								
11	07:51:27.25	49.33 N	18.95 E	15.2	0.4	Kysuce		
Máj								
1	03:51:08.65	48.54 N	18.63 E	3.5	-	Vtáčnik		
1	10:08:07.78	48.92 N	20.66 E	0	1.1	Spiš		
2	05:57:29.31	48.48 N	17.29 E	3.3	0.1	Malé Karpaty		
2	07:24:05.32	49.36 N	18.95 E	12.4	0.4	Kysuce		
4	03:11:39.20	49.10 N	18.70 E	2.3	0.8	Rajecká dolina		

Tab. 4 Seizmometricky lokalizované zemetrasenia s epicentrom na území SR

11	13:01:22.36	48.51 N	17.51 E	0	0.4		Malé Karpaty
27	14:39:32.83	49.11 N	19.56 E	0	1.9		Liptov
27	18:58:47.48	48.91 N	21.95 E	6.4	0.8		Vihorlatské vrchy
28	02:39:15.55	48.83 N	22.04 E	8.1	1.4	3	Vihorlatské vrchv
28	04.22.07.76	48 83 N	22.04 E	8.9	2.1	3-4	Vihorlatské vrchy
	01.22.07.70	10.05 11	22.011	0.7	2.1	51	v monatske vreny
Jún							~
10	13:29:47.46	49.04 N	20.70 E	0	-		Spiš
13	23:32:08.89	47.72 N	18.29 E	9.5	0.8		Samorín-Komárno-Stúrovo
18	09:13:28.16	48.88 N	22.00 E	9	-		Vihorlatské vrchy
22	12:08:19.29	49.21 N	20.99 E	0	-		Čergov
27	20:13:43.69	48.53 N	17.51 E	2.9	0.1		Malé Karpaty
Iúl							
11	07.17.41 23	48 84 N	17 98 F	0	1.1		Považský Inovec
11	18.20.13.36	48.54 N	17.30 E	35	1.1		Malá Karpaty
11	10.29.13.30	40.34 IN	17.55 E	5.5	-		Nale Kalpaty
14	11:04:19.77	48.03 N	19.40 E	0	-		Polana
17	02:39:06.67	48.36 N	16.93 E	0	0.6		Zanorie
17	06:30:41.07	48.83 N	21.89 E	5.4	0.7		Vihorlatské vrchy
23	11:31:43.81	48.93 N	22.24 E	0	1		Vihorlatské vrchy
27	12:19:01.98	49.36 N	21.54 E	10	0.9		Ondavská vrchovina
August	t						
2	20:20:44.34	48.46 N	17.28 E	4.2	0.1		Malé Karpaty
3	04:26:31.00	48.46 N	17.28 E	4.4	0.5		Malé Karpaty
8	09:40:58.26	48.80 N	17.94 E	0	-		Považský Inovec
15	05:03:51.30	48.47 N	17.31 E	4.1	0.3		Malé Karpaty
22	01:59:19.41	48.57 N	17.18 E	0	1.3		Záhorie
Sonton	hor						
3 3	13.13.53.61	48 68 N	1971 F	0	0.7		Veporské vrchv
6	08.05.43.58	48.55 N	17.71 L 17.63 E	13	0.7		Moló Korpoty
0	00.05.45.50	40.JJ IN	17.03 E	1.5	0.7		White Kalpaty
0	20:30:21.20	48.57 N	1/.1/E	0	0.9		Zanorie č
12	09:15:41.15	47.98 N	18.12 E	3.3	0.7		Samorin-Komarno-Sturovo
12	09:20:50.78	48.57 N	17.17E	0	0.8		Zahorie
16	15:06:52.41	49.23 N	21.04 E	1.7	1.4		Cergov
18	19:10:20.55	49.43 N	19.55 E	0	1.2		Orava
Októbe	er						
17	11:29:11.78	48.65 N	20.13 E	5.5	1.9		Revúcka vrchovina
17	22.33.35.06	48.62 N	20.18 E	0			Revúcka vrchovina
29	06.17.46.43	48 93 N	21.83 E	13	_		Vihorlatské vrchy
29	14.42.30.41	48 45 N	17 27 E	0	03		Malé Karnaty
30	07.06.0616	48.57 N	22.00 E	0	0.5		Východoslovenská nížina
50	07.00.00.10	40.57 11	22.00 L	0			v yehodoslovenska mzina
Novem	lber			0			
3	13:02:23.93	48.79 N	19.45 E	0	3.2	5-6	Horehronie
4	16:56:15.42	48.79 N	22.13 E	3.6	0.3		Vihorlatské vrchy
5	09:24:17.11	49.35 N	18.92 E	0	-		Kysuce
5	22:44:29.56	49.05 N	18.62 E	0	2.1	4	Rajecká dolina
10	03:21:25.51	48.64 N	20.19 E	0	0.3		Revúcka vrchovina
14	12:22:46.23	48.68 N	20.14 E	0	-		Revúcka vrchovina
14	17:19:30.30	48.56 N	22.13 E	4.6	0.7		Východoslovenská nížina
18	20:03:17.35	48.45 N	17.31 E	1.1	0.7		Malé Karpaty
Decom	hom						1 2
becem	04.50.54 80	49.44 N	1721 E	17	0.2		Malá Karpatu
12	04.39.34.69	40.44 IN	17.31 E	1.7	0.5		Male Kalpaty
12	01.33.17.82	40.7U IN	10.00 E	0	-		v tauliik Malé Kanaata
14	07:47:02.72	48.45 N	1/.5/E	0	-		Male Karpaty
15	18:01:51.98	47.74 N	18.00 E	3.3	-		Samorin-Komárno-Stúrovo
17	03:12:54.44	48.33 N	17.09 E	0	0.3		Malé Karpaty
22	07:53:19.52	48.70 N	19.73 E	0	1.4		Veporské vrchy
31	02:32:10.66	48.70 N	19.72 E	0	2.3	3	Veporské vrchy

Obr. 37 Seizmometricky lokalizované epicentrá zemetrasení na území SR v roku 2015.

4.3 Makroseizmicky pozorované zemetrasenia na území Slovenskej republiky

V roku 2015 bolo na území Slovenska makroseizmicky pozorovaných 9 zemetrasení. Všetky makroseizmicky pozorované zemetrasenia boli seizmometricky lokalizované.

Dňa *1. 1. 2015* došlo k sérii 4 zemetrasení s epicentrom v Maďarku (slovensko-maďarskej hraničnej oblasti) pri obci Balassagyarmat, ktoré boli makroseizmicky pozorované aj na území Slovenska. Zemetrasenie o *06:43 UTC* bolo makroseizmicky pozorované (35 údajov) v 25 lokalitách na území Slovenska (tab. 5). Určená epicentrálna intenzita zemetrasenia $I_0 = 5$ ° EMS-98. Najvyššia makroseizmická intenzita dosiahnutá na území Slovenska je 4° EMS-98. Zemetrasenie bolo zaznamenané 7 seizmickými stanicami NSSS – CRVS, KECS, KOLS, MODS, SRO, VYHS a ZST. Na základe záznamov z týchto staníc bolo vypočítané lokálne magnitúdo zemetrasenia $M_L = 3,5$. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom SeismicHandler. Epicentrum zemetrasenia sa nachádzalo na území Maďarska pri obci Balassagyarmat. Seizmometrické parametre zemetrasenia sú:

1. 1. 2015
06:43:25,1
48,032° N
19,426° E
2,6 km
3,5

Lokalita	Zemepisná šírka [°N]	Zemepisná dĺžka [°E]	Počet pozorovaní	I [° EMS-98]
Peťov	48.108	19.479	1	4
Záhorce	48.102	19.336	4	3-4
Dolná Strehová	48.243	19.498	1	3-4
Bušince	48.191	19.500	3	3
Lučenec	48.332	19.664	3	3
Nenince	48.147	19.262	2	3
Cinobaňa	48.480	19.634	1	3
Čakanovce	48.214	19.802	1	3
Kosihovce	48.186	19.199	1	3
Levice	48.217	18.610	1	3
Opatovská Nová Ves	48.121	19.263	1	3
Prieloh	48.232	19.533	1	3
Sel'any	48.159	19.192	1	3
Veľká Čalomija	48.069	19.205	1	3
Veľký Krtíš	48.214	19.350	1	3
Vinica	48.117	19.122	1	3
Malý Krtíš	48.189	19.354	2	pozorované
Selešťany	48.091	19.335	2	pozorované
Kováčovce	48.098	19.471	1	pozorované
Krupina	48.367	19.072	1	pozorované
Modrý Kameň	48.248	19.324	1	pozorované
Šiatorská Bukovinka	48.188	19.838	1	pozorované
Štúrovo	47.804	18.698	1	pozorované
Závada	48.636	18.073	1	pozorované
Želovce	48.130	19.371	1	pozorované

Tab. 5 Makroseizmické pozorovania pre zemetrasenie z 1. 1. 2015 o 06:43 UTC

Zemetrasenie o *10:45 UTC* bolo makroseizmicky pozorované (145 údajov) v 54 lokalitách na území Slovenska (tab. 6). Určená epicentrálna intenzita zemetrasenia $I_0 = 5^{\circ}$ EMS-98. Najvyššia makroseizmická intenzita dosiahnutá na území Slovenska je 5° EMS-98. Zemetrasenie bolo zaznamenané 8 seizmickými stanicami NSSS – CRVS, KECS, KOLS, LANS, MODS, SRO, VYHS a ZST. Na základe záznamov z týchto staníc bolo vypočítané lokálne magnitúdo zemetrasenia $M_L = 3,5$. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom Seismic-Handler. Epicentrum zemetrasenia sa nachádzalo na území Maďarska pri obci Balassagyarmat. Seizmometrické parametre zemetrasenia sú:

1. 1. 2015
10:45:58,7
48,023° N
19,421° E
0 km
3,5

Lokalita	Zemepisná šírka [°N]	Zemepisná dĺžka [°E]	Počet pozorovaní	I [° EMS-98]
Opatovská Nová Ves	48.121	19.263	1	5
Dolná Strehová	48.243	19.498	4	4
Malý Krtíš	48.189	19.354	3	4
Horný Tisovník	48.444	19.342	2	4
Kováčovce	48.098	19.471	1	4
Kubáňovo	48.058	18.809	1	4
Želovce	48.130	19.371	6	3-4
Dolné Plachtince	48.201	19.308	2	3-4
Dudince	48.169	18.885	2	3-4
Sklabiná	49.046	19.005	2	3-4
Veľké Straciny	48.196	19.397	2	3-4
Banský Studenec	48.446	18.971	1	3-4
Veľká Čalomija	48.069	19.205	1	3-4
Mýtna	48.467	19.552	1	3-4
Veľký Krtíš	48.214	19.350	42	3
Zvolen	48.572	19.140	7	3
Pliešovce	48.417	19.186	6	3
Šahy	48.075	18.951	6	3
Banská Bystrica	48.733	19.143	3	3
Bušince	48.191	19.500	3	3
Modrý Kameň	48.248	19.324	3	3
Obeckov	48.172	19.337	2	3
Stredné Plachtince	48.241	19.286	2	3
Štúrovo	47.804	18.698	2	3
Tupá	48.114	18.894	2	3
Veľká Ves nad Ipľom	48.080	19.088	2	3
Vinica	48.117	19.122	2	3
Bátorová	48.134	19.273	1	3
Detva	48.557	19.416	1	3
Dolinka	48.092	19.157	1	3
Dolný Badín	48.269	19.068	1	3
Hontianske Tesáre; Dvorníky	48.208	18.932	1	3
Ilija	48.418	18.898	1	3
Ipeľské Predmostie	48.062	19.059	1	3
Ipeľské Úľany	48.126	19.051	1	3
Kosihovce	48.186	19.199	1	3
Peťov	48.108	19.479	1	3
Tomášovce	48.383	19.783	1	3
Veľké Zlievce	48.206	19.467	1	3
Vyškovce nad Ipľom	48.072	18.864	1	3
Závada	48.636	18.073	1	3
Záhorce	48.102	19.336	4	pozorované
Selešťany	48.091	19.335	3	pozorované
Horné Túrovce	48.128	18.945	2	pozorované
Slovenské Ďarmoty	48.095	19.280	2	pozorované

Tab. 6 Makroseizmické pozorovania pre zemetrasenie z 1. 1. 2015 o 10:45 UTC

Čebovce	48.209	19.231	1	pozorované
Kalinka (Vígľašská Huta)	48.494	19.275	1	pozorované
Krupina	48.367	19.072	1	pozorované
Nenince	48.147	19.262	1	pozorované
Nová Ves	48.170	19.365	1	pozorované
Plášťovce	48.150	18.993	1	pozorované
Sel'any	48.159	19.192	1	pozorované
Šiatorská Bukovinka	48.188	19.838	1	pozorované
Suché Brezovo	48.310	19.360	1	pozorované

Zemetrasenie o *14:22 UTC* bolo makroseizmicky pozorované (4 údaje) v 4 lokalitách na území Slovenska (tab. 7). Určená epicentrálna intenzita zemetrasenia I₀ je 4° EMS-98. Najvyššia makroseizmická intenzita dosiahnutá na území Slovenska je 3° EMS-98. Zemetrasenie bolo zaznamenané 9 seizmickými stanicami NSSS – CRVS, KECS, KOLS, LANS, MODS, SRO, SRO2, VYHS a ZST. Na základe záznamov z týchto staníc bolo vypočítané lokálne magnitúdo zemetrasenia $M_L = 2,6$. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom SeismicHandler. Epicentrum zemetrasenia sa nachádzalo na území Maďarska pri obci Balassagyarmat. Seizmometrické parametre zemetrasenia sú:

dátum	1. 1. 2015
čas vzniku [UTC]	14:22:11,1
epicentrum: zemepisná šírka	48,011° N
zemepisná dĺžka	19,409° E
hĺbka ohniska	0 km
lokálne magnitúdo	2,6

Tab. 7 Makroseizmické pozorovania pre zemetrasenie z 1. 1. 2015 o 14:22 UTC

Lokalita	Zemepisná šírka [°N]	Zemepisná dĺžka [°E]	Počet pozorovaní	I [° EMS-98]
Čebovce	48.209	19.231	1	3
Dolinka	48.092	19.157	1	3
Kosihovce	48.186	19.199	1	3
Želovce	48.130	19.371	1	3

Zemetrasenie o **19:44 UTC** bolo makroseizmicky pozorované (2 údaje) v 2 lokalitách na území Slovenska (tab. 8). Určená epicentrálna intenzita zemetrasenia I₀ je 4° EMS-98. Údaje obsiahnuté v makroseizmických dotazníkoch z lokalít Slovenska boli nedostatočné na určenie hodnoty makroseizmickej intenzity. Zemetrasenie bolo zaznamenané 8 seizmickými stanicami NSSS – CRVS, KECS, KOLS, LANS, MODS, SRO, VYHS a ZST. Na základe záznamov z týchto staníc bolo vypočítané lokálne magnitúdo zemetrasenia $M_L = 2,3$. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom SeismicHandler. Epicentrum zemetrasenia sa nachádzalo na území Maďarska. Seizmometrické parametre zemetrasenia sú:

1. 1. 2015
19:44:37,7
48,026 °N
19,416 °E
0 km
2,3

Tab. 8 Makroseizmické pozorovania pre zemetrasenie z 1. 1. 2015 o 19:44 UTC

Lokalita	Zemepisná šírka [°N]	Zemepisná dĺžka [°E]	Počet pozorovaní	I [° EMS-98]
Veľká Ves nad Ipľom	48.080	19.088	1	pozorované
Vrbovka	48.090	19.410	1	pozorované

Dňa 28. 5. 2015 došlo k sérii dvoch zemetrasení s epicentrom na východnom Slovensku v oblasti Vihorlatských vrchov. Zemetrasenie o 02:39 UTC bolo makroseizmicky pozorované (2 údaje) v 1 lokalite na území Slovenska (tab. 9). Určená epicentrálna intenzita zemetrasenia I₀ je 3° EMS-98. Zemetrasenie bolo zaznamenané 5 seizmickými stanicami NSSS – CRVS, KECS, KOLS, STHS a VYHS. Na základe záznamov zo seizmických staníc bolo vypočítané lokálne magnitúdo zemetrasenia M_L = 1,4. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom SeismicHandler. Epicentrum zemetrasenia sa nachádzalo na východnom Slovensku v oblasti Vihorlatských vrchov. Seizmometrické parametre zemetrasenia sú:

28. 5. 2015
02:39:15,6
48,833° N
22,036° E
8,1 km
1,4

Tab. 9 Makroseizmické pozorovania pre zemetrasenie z 28. 5. 2015 o 02:39 UTC

Lokalita	Zemepisná	Zemepisná	Počet	I
	šírka [°N]	dĺžka [°E]	pozorovaní	[° EMS-98]
Vinné	48.814	21.977	2	3

Zemetrasenie o *04:22 UTC* makroseizmicky pozorované (12 údajov) v 3 lokalitách na území Slovenska (tab. 10). Určená epicentrálna intenzita zemetrasenia I_0 je 3-4° EMS-98. Najvyššia makroseizmická intenzita dosiahnutá na území Slovenska je 3-4° EMS-98. Zemetrasenie bolo zaznamenané 5 seizmickými stanicami NSSS – CRVS, KECS, KOLS, STHS a VYHS. Na základe záznamov zo seizmických staníc bolo vypočítané lokálne magnitúdo zemetrasenia $M_L = 2,1$. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom SeismicHandler. Epicentrum zemetrasenia sa nachádzalo na východnom Slovensku v oblasti Vihorlatských vrchov. Seizmometrické parametre zemetrasenia sú:

dátum	28. 5. 2015
čas vzniku [UTC]	04:22:07,8
epicentrum: zemepisná šírka	48,832° N
zemepisná dĺžka	22,038° E
hĺbka ohniska	8,9 km
lokálne magnitúdo	2,1

Tab. 10 Makroseizmické pozorovania pre zemetrasenie z 28. 5. 2015 o 04:22 UTC

Lokalita	Zemepisná šírka [°N]	Zemepisná dĺžka [°E]	Počet pozorovaní	I [° EMS-98]
Klokočov	48.813	22.032	2	3-4
Vinné	48.814	21.977	8	3
Kaluža	48.806	22.006	2	pozorované

Zemetrasenie z 3. 11. 2015 o 13:02 UTC s epicentrom na Horehroní (pri obciach Predajná, Podbrezová) bolo makroseizmicky pozorované (556 údajov) v 77 lokalitách na území Slovenska (tab. 11). Určená epicentrálna intenzita zemetrasenia I₀ je 5-6° EMS-98. Zemetrasenie bolo zaznamenané 11 seizmickými stanicami NSSS – CRVS, IZAB, KECS, KOLS, LANS, MODS, SRO, SRO2, STHS, VYHS a ZST. Na základe záznamov zo seizmických staníc bolo vypočítané lokálne magnitúdo zemetrasenia $M_L = 3,2$. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom SeismicHandler. Epicentrum zemetrasenia sa nachádzalo na Horehroní (pri obciach Predajná, Podbrezová). Seizmometrické parametre zemetrasenia sú:

dátum	3. 11. 2015
čas vzniku [UTC]	13:02:23,9
epicentrum: zemepisná šírka	48,794° N
zemepisná dĺžka	19,448° E
hĺbka ohniska	0 km
lokálne magnitúdo	3,2

Tab. 11 Makroseizmické pozorovania pre zemetrasenie z 3. 11. 2015 o 13:02 UTC

Lokalita	Zemepisná šírka [°N]	Zemepisná dĺžka [°E]	Počet pozorovaní	I [° EMS-98]
Podbrezová	48.815	48.815 19.522		5-6
Predajná	48.820	19.463	41	5-6
Podbrezová - časť Lopej	48.818	19.496	15	5-6
Brezno	48.813	19.660	136	5

Dolná Lehota	48.847	19.521	20	5
Brusno	48.791	19.389	14	5
Nemecká	48.812	19.435	12	5
Podbrezová - časť Skalica	48.811	19.516	3	5
Jasenie	48.863	19.447	10	4
Medzibrod	48.792	19.354	10	4
Ráztoka	48.821	19.403	7	4
Valaská - Piesok	48.813	19.558	5	4
Selce	48.764	19.207	3	4
Donovaly	48.877	19.226	2	4
Čierny Balog - Medveďov	48.750	19.625	1	4
Liptovský Ondrej	49.109	19.716	1	4
Muráň	48.755	20.079	1	4
Závažná Poruba	49.055	19.652	1	4
Lučatín	48.780	19.332	3	3-4
Michalová	48.763	19.781	3	3-4
Liptovské Revúce	48.920	19.185	2	3-4
Liptovský Mikuláš	49.086	19.621	2	3-4
Liptovský Hrádok	49.041	19.737	1	3-4
Štrbské Pleso	49.128	20.031	1	3-4
Banská Bystrica	48.733	19.143	45	3
Hronec	48.759	19.561	14	3
Brezno - Mazorníkovo	48.793	19.639	9	3
Ľubietová	48.741	9	3	
Slovenská Ľupča	48.763	19.271	8	3
Horná Lehota	48.973	19.500	7	3
Liptovská Lužná	48.936	19.333	6	3
Strelníky	48.722	19.397	6	3
Ružomberok	49.048	19.279	5	3
Čierny Balog	48.744	19.645	4	3
Štiavnička	49.069	19.344	4	3
Demänovská Dolina	48.997	19.584	3	3
Detva	48.557	19.416	3	3
Liptovská Osada	48.921	19.275	3	3
Podbrezová - časť Štiavnička	48.805	19.555	3	3
Tále	48.874	19.600	3	3
Závadka nad Hronom	48.849	19.910	3	3
Bystrá	48.872	19.566	2	3
Hriňová	48.604	19.545	2	3
Liptovské Sliače	49.061	19.390	2	3
Nižná Boca	48.948	19.768	2	3
Pohorelá	48.853	20.026	2	3
Polomka	48.852	19.875	2	3
Poprad	49.063	20.305	2	3
Prievidza	48.772	18.626	2	3
Slovenská Ľupča - Priboj	48.765	19.276	2	3
Baláže	48.814	19.197	1	3
Bobrovec	49.122	19.616 1		3
Liptovský Ján	49.041	19.678	1	3

Lučivná	49.058	20.150	1	3
Martinček	49.092	19.337	1	3
Mýto pod Ďumbierom	48.886	19.610	1	3
Podkonice	48.800	19.257	1	3
Pohorelská Maša	48.846	20.034	1	3
Pohronská Polhora	48.756	19.801	1	3
Poníky	48.701	19.308	1	3
Povrazník	48.716	19.365	1	3
Šálková	48.738	19.217	1	3
Štrba	49.069	20.075	1	3
Tajov	48.748	19.059	1	3
Veľký Krtíš	48.214	19.350	1	3
Vlachy	49.092	19.478	1	3
Vlkanová	48.668	19.147	1	3
Valaská	48.813	19.571	27	pozorované
Nemecká - Dubová	48.807	19.434	3	pozorované
Heľpa	48.863	19.972	2	pozorované
Priechod	48.782	19.236	2	pozorované
Beňuš	48.826	19.749	1	pozorované
Brezno - Zadné Halny	48.819	19.669	1	pozorované
Nemce	48.764	19.184	1	pozorované
Osrblie	48.759	19.528	1	pozorované
Partizánska Ľupča	48.987	19.420	1	pozorované
Svätý Kríž	49.051	19.537	1	pozorované

Zemetrasenie z 5. 11. 2015 o 22:44 UTC s epicentrom v Rajeckej doline (pri obci Rajecká Lesná) bolo makroseizmicky pozorované (26 údajov) v 13 lokalitách na území Slovenska (tab. 12). Určená epicentrálna intenzita zemetrasenia I₀ je 4° EMS-98. Zemetrasenie bolo zaznamenané 11 seizmickými stanicami NSSS – CRVS, IZAB, KECS, KOLS, LANS, MODS, SRO, SRO2, STHS, VYHS a ZST. Na základe záznamov zo seizmických staníc bolo vypočítané lokálne magnitúdo zemetrasenia $M_L = 2.1$. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom SeismicHandler. Epicentrum zemetrasenia sa nachádzalo v Rajeckej doline (pri obci Rajecká Lesná). Seizmometrické parametre zemetrasenia sú:

dátum	5. 11. 2015
čas vzniku [UTC]	22:44:29,6
epicentrum: zemepisná šírka	49,047° N
zemepisná dĺžka	18,624° E
hĺbka ohniska	0 km
lokálne magnitúdo	2,1

Lokalita	Zemepisná Zemepisná šírka [°N] dĺžka [°E]		Počet pozorovaní	I [° EMS-98]
Bodiná	49.107	18.556	1	4
Malé Lednice	49.069	18.572	2	3-4
Domaniža	49.038	18.555	5	3
Rajec	49.075	18.642	4	3
Pružina	49.015	18.482	2	3
Dolný Lieskov	49.055	18.418	1	3
Vrícko	48.97	48.97 18.707		3
Zbyňov	49.12	49.12 18.653		3
Zemianska Závada	49.058	18.499	1	3
Rajecká Lesná	49.047	18.628	4	pozorované
Fačkov	49.012	18.604	2	pozorované
Kláštor pod Znievom	48.97	18.817	1	pozorované
Púchov	49.124	18.326	1	pozorované

Tab. 12 Makroseizmické pozorovania pre zemetrasenie z 5. 11. 2015 o 22:44 UTC

Zemetrasenie z 31. 12. 2015 o 02:32 UTC s epicentrom vo Veporských vrchoch (pri obci Čierny Balog) bolo makroseizmicky pozorované (2 údaje) v 2 lokalitách na území Slovenska (tab. 13). Určená epicentrálna intenzita zemetrasenia I₀ je 3° EMS-98. Zemetrasenie bolo zaznamenané 4 seizmickými stanicami NSSS – IZAB, KECS, LANS a VYHS. Na základe záznamov zo seizmických staníc bolo vypočítané lokálne magnitúdo zemetrasenia $M_L = 2,3$. Lokalizácia epicentra zemetrasenia bola vykonaná na základe interpretácií programovým balíkom SeismicHandler. Epicentrum zemetrasenia sa nachádzalo vo Veporských vrchoch (pri obci Čierny Balog). Seizmometrické parametre zemetrasenia sú:

dátum	31. 12. 2015
čas vzniku [UTC]	02:32:10,7
epicentrum: zemepisná šírka	48,696° N
zemepisná dĺžka	19,720° E
hĺbka ohniska	0 km
lokálne magnitúdo	2,3

Tab. 13 Makroseizmické pozorovania pre zemetrasenie z 31. 12. 2015 o 02:32 UTC

Lokalita	Zemepisná šírka [°N]	Zemepisná dĺžka [°E]	Počet pozorovaní	I [° EMS-98]
Čierny Balog	48.744	19.645	1	3
Hronec	48.759	19.561	1	3

Prehľad makroseizmicky pozorovaných zemetrasení na území Slovenskej republiky v roku 2015 a ich hlavné parametre sú uvedené v tab. 14, ich distribúcia v obr. 38.

Γ	DÁTUM		ČAS [UTC]			HY	HYPOCENTRUM			M ₁ I ₀ LOKALITA	
rok	mes	deň	hod	min	sek	[°N]	[°E]	h [km]	T.T.	-0	Lominin
2015	1	1	06	43	25.1	48.032	19.426	3	3.5	5	Maďarsko
2015	1	1	10	45	58.7	48.023	19.421	0	3.5	5	Maďarsko
2015	1	1	14	22	11.1	48.011	19.409	0	2.6	4	Maďarsko
2015	1	1	19	44	37.7	48.026	19.416	0	2.3	4	Maďarsko
2015	5	28	02	39	15.6	48.833	22.036	8	1.4	3	Vihorlat
2015	5	28	04	22	07.8	48.832	22.038	9	2.1	3-4	Vihorlat
2015	11	3	13	02	23.9	48.794	19.448	0	3.2	5-6	Horehronie
2015	11	5	22	44	29.6	49.047	18.624	0	2.1	4	Rajecká dolina
2015	12	31	02	32	10.7	48.696	19.72	0	2.3	3	Veporské vrchy

Tab. 14 Makroseizmicky pozorované zemetrasenia na území Slovenskej republiky v roku 2015

Obr. 38 Epicentrá makroseizmicky pozorovaných zemetrasení na území SR v roku 2015

5 Literatúra

- Avramova-Tacheva, E., Vrablyansky, B. & Kostak, B., 1984: An attempt to detect recent movements along seismogenic faults. *Review of the Bulgarian Geological Society XLV (3)*, 276–288 (*in Bulgarian*).
- Bezák, V., (Ed.), Dublan, L., Hraško, Ľ., Konečný, V., Kováčik, M., Madarás, J., Plašienka, D. & Pristaš, J., 1999: Geologická mapa Slovenského rudohoria – západná časť M 1:50 000. Ministerstvo životného prostredia SR; Štátny geologický ústav Dionýza Štúra, Bratislava.
- Biely, A. (Ed.), Beňuška, P., Bezák, V., Bujnovský, A., Halouzka, R., Ivanička, J., Kohút, M., Klinec, A., Lukáčik, E., Maglay, J., Miko, O., Pulec, M., Putiš, M. & Vozár, J., 1992: Geologická mapa Nízkych Tatier M 1:50 000. *Ministerstvo životného prostredia SR; Štátny geologický ústav Dionýza Štúra, Bratislava.*
- Borre, K., Cacoń, S., Cello, G., Kontny, B., Kostak, B., Andersen, H. Likke, Moratti, G., Piccardi, L., Stemberk, J., Tondi, E. & Vilimek, V. 2003: The COST project in Italy: analysis and monitoring of seismogenic faults in the Gargano and Norcia areas (centralsouthern Apennines, Italy. *Journal of Geodynamics 36*, *3–18*.
- Briestenský, M., Stemberk, J. & Petro, Ľ., 2007: Displacements registered around the 13 March 2006 Vrbové earthquake M=3.2 (Western Carpathians). *Geologica Carpathica 58, 487–493*.
- Briestenský, M. & Stemberk, J., 2008: Micromovements monitoring in caves of western Slovakia. *Slovenský kras 46/25, 77–83 (in Slovak)*.
- Briestenský, M., Košťák, B., Stemberk, J., Petro, Ľ., Vozár, J. & Fojtíková, L., 2010: Active tectonic fault microdisplacement analyses: A comparison of results from surface and underground monitoring in Western Slovakia. *Acta Geodyn. Geomater., Vol. 7, No 4 (160),* 387 397.
- Briestenský, M., Stemberk, J., Michalík, J., Bella, P. & Rowberry, M.D., 2011: The use of a karstic cave system in a study of active tectonics: fault movements recorded at Driny Cave, Malé Karpaty Mts. (Slovakia), J. Cave Karst Stud., 73, 114–123, doi: 10.4311/jcks2010es0166.
- Briestenský, M., Thinová, L., Praksová, R., Stemberk, J., Rowberry, M.D. & Knejflová, Z., 2014: Radon, carbon dioxide, and fault displacements in central Europe related to the Tōhoku Earthquake, *Radiat. Prot. Dosim.*, *doi:10.1093/rpd/ncu090*.
- Drakatos, G., Petro, Ľ., Ganas, A., Melis, N., Košťák, B., Kontny, B., Cacoń, S., & Stercz. M., 2005: Monitoring of strain accumulation along active faults in the Eastern Gulf of Corinth: Instruments and Network setup. Acta Geodynamica et Geomaterialia, 2 (137), 37–43.
- Droppa, A., 1957: Demänovské jaskyne. Krasové zjavy Demänovskej doliny. Vyd. SAV, Bratislava, 1–289 (in Slovak with German Summary).
- Droppa, A., 1972: Geomorfologické pomery Demänovskej doliny. *Slovenský kras 10, 9–46 (in Slovak with German Summary).*
- Dvořák, P., Pospíšil, L., Hotovcová, J., Mojzeš, M. & Papčo, J., 2005: Geo-analýza horizontálních pohybových tendencí na východním Slovensku. Exploration Geophysics, Remote Sensing and Environment 12, 9–22 (in Czech with English Abstract).
- Gosar, A., Šebela, S., Košťák, B. & Stemberk, J., 2009: Surface versus underground measurements of active tectonic displacements detected with TM 71 extensioneters in Western Slovenia. *Acta Carsologica 38, 213–226.*
- Hók, J., Bielik, Kováč, P., & Šujan, M., 2000: Neotektonický charakter územia Slovenska. *Mineralia Slovaca, Bratislava, 32, 459–470.*

- Konečný, V., (Ed), Lexa, J., Halouzka, R., Dublan, L., Šimon, L., Stolár, M., Nagy, A., Polák, M., Vozár, J., Havrila, M., Pristaš, J., 1998: Geologická mapa Štiavnických vrchov a Pohronského Inovca (Štiavnický stratovulkán). *Ministerstvo životného prostredia SR; Štátny* geologický ústav Dionýza Štúra, Bratislava.
- Kontny. B., Cacoń, S., Košťák, B. & Stemberk, J., 2005: Methodic analysis of data obtained by monitoring micro-tectonic movements with TM71 crack gauges in the Polish Sudeten. *Acta Geodynamica et Geomaterialia 3 (139)*, 57–67.
- Kostak, B., 1969: A new device for in-situ movement detection and measurement. *Experimen*tal Mechanics. SESA (American Society for Experimental Stress Analysis) Journal 9, 374–379.
- Košťák, B., 1998: Evidence of active tectonic movements in the Krušné Hory Mts. (NW Bohemia). *Journal of the Czech Geological Society* 43, 287–297.
- Košťák, B. & Rybář, J., 1978: Measurements of the activity of very slow slope movements. Grundlagen u. Anwedung d. Felsmechanik. *Trans Tech. Publ., Clausthal, 191–205.*
- Kostak, B. & Cruden, D.M., 1990: The Moire´ crack gauges on the crown of the Frank Slide. *Canadian Geotechnical Journal 27, 835–840.*
- Kostak, B., Vilimek, V. & Zapata, M.L., 2002: Registration of microdisplacements at a Cordillera Blanca fault scarp. *Acta Montana, IRSM ASCR, Ser. A 19 (123), 61–74.*
- Maglay, J. (Ed.), Halouzka, R., Banacky, V., Pristas, J. and Janocko, J., 1999: Neotektonická mapa Slovenska 1:500 000. Vyd. MŽP SR a Geologická služba SR, Bratislava.
- Mojzeš, M. et al., 2015: Národné centrum diagnostikovania deformácií zemského povrchu na území Slovenska. Zborník príspevkov na medzinárodnom sympóziu Geodetické základy a geodynamika 2015, Kočovce, ISBN 978-80-227-4466-9.
- Nemčok, M., Konečný, P. & Lexa, O., 2000: Calculations of tectonic, magmatic and residual stress in the Štiavnica stratovolcano, Western Carpathians: implications for mineral precipitation paths. *Geologica Carpathica 51, 19–36*.
- Ondrášik, R., Hovorka, D. & Matejček, A., 1987: Prejavy muránsko-divínskej poruchovej zóny vo veporickom kryštaliniku v štôlni PVE Ipeľ. *Mineralia Slovaca 19, 29–44*.
- Petro, Ľ., Košťák, B., Polaščinová, E., & Spišák, Z., 1999: Monitoring blokových pohybov v Slanských vrchoch. *Mineralia Slovaca 31, 549–554 (in Slovak with English summary)*.
- Petro, Ľ., Vlčko, J., Ondrášik, R. & Polaščinová, E., 2004: Recent tectonics and slope failures in the Western Carpathians. *Engineering Geology* 74, 103–112.
- Polák, M., Jacko, S. (Eds.), Vozár, J., Vozárová, A., Gross, P., Harčár, J., Sasvári, T., Zacharov, M., Baláž, B., Kaličiak, M., Karoli, S., Nagy, A., Buček, S., Maglay, J., Spišák, Z., Žec, B., Filo, I., Janočko, J., 1996. Geologická mapa Braniska a Čiernej hory 1:50 000. Vyd. Geologická služba SR, Bratislava.
- Pospíšil, L., Nemčok, J., Graniczny, M. & Doktór, S., 1986: Příspěvek metod dálkového průzkumu k identifikaci zlomů s horizontálním posunem v oblasti Západných Karpat. *Mineralia Slovaca 18, 385–402.*
- Pospíšil, L., Bezák, V., Nemčok, J., Feranec, J., Vass, D. & Obernauer, D., 1989: Muránsky tektonický systém významný príklad horizontálnych posunov v Západných Karpatoch. *Mineralia Slovaca 21, 305–322.*
- Stemberk, J., Košťák, B., 2007: 3-D trend of aseismic creep along active faults in western part of the Gulf of Corinth, Greece. *Acta Geodynamica et Geomaterialia* 4 (145), 53–65.
- Stemberk, J., Briestenský, M., Cacoń, S., 2015: The recognition of transient compressional fault slow–slip along the northern shore of Hornsund Fjord, SW Spitsbergen, Svalbard. *Polish Polar Research, 2, 36, 109-123.* (DOI: 10.1515/popore-2015-0007).
- Stepančíková, P., Stemberk, J., Vilímek, V., Košťák, B., 2008: Neotectonic development of drainage network in the East Sudeten and monitoring of recent displacements on tectonic structures (Czech Republic). *Geomorphology 102, 68–80*.

- Šebela, S., Gosar, A., Košťák, B. & Stemberk, J., 2005: Active tectonic structures in the W part of Slovenia setting of micro-deformation monitoring. *Acta Geodynamica et Geomaterialia 2 (137), 45–57.*
- Stercz, M., 2004: SMDilat aplikácia na vyhodnocovanie meraní dilatometrom TM-71 programovaná v jazyku Delphi pre platformu MS Windows (+ MS Windows XP).
- Vlcko, J., 2002: Monitoring an effective tool in safeguarding the historic structures. In: Sassa, K. (Ed.), Proc. of the Inter. Symp. on Landslide Risk Mitigation and Protection of Cultural and Natural Heritage, Kyoto, Japan. Publ. UNESCO/ Kyoto Univ. Press, 267– 278.
- Vlcko, J., 2004: Extremely slow slope movements influencing the stability of Spis Castle, UNESCO site. *Landslides 1-1, 67–71*.
- Vlčko, J., Petro, Ľ., 2002: Monitoring of subgrade movements beneath historic structures. In: J.L. van Roy & C.A. Jermy (Eds.) "Proc. of 9th Int. Congress IAEG", Durban, South Africa, (CD-ROM), 1432-1437.
- Vlčko, J., Greif, V., Gróf, V., Jezný, M., Petro, Ľ., Brček, M., 2009: Rock displacement and thermal expansion at historic heritage sites in Slovakia. *Environmental Geology* 58, 1727--1740.

Internetové zdroje:

EPN - http://www.epncb.oma.be/_networkdata/stationmaps.php.

EPN - <u>http://www.epncb.oma.be/_productsservices/timeseries/</u>

EPN - http://www.epncb.oma.be/_productsservices/coordinates/

EPN -

http://www.epncb.oma.be/_productsservices/coordinates/pdf/ETRF_Monitoring_Firenze_Brockmann. pdf